API documentation for libcomm

Contents
1 Overview 1
2 comm.eh — Access to the COMM, IrDA, USB ports. 1
2.1 Description 1
2.1.1 Connection parameters 2
2.1.2 Example 2
2.2 Types . . .o 3
2.3 Functions 3

1 Overview

This library provides interface to connect to the logical serial ports.

2 comm.eh — Access to the COMM, IrDA,
USB ports.

use '"comm.eh"

2.1 Description

This header defines interface for logical serial port connections. A "logical”
serial port is a connection through which bytes are transferring serially. The
logical serial port is not necessarily correspond to a physical RS-232 serial
port. For instance, IrDA IRCOMM port can commonly be configured so that
it can act as a "logical” serial port.

Only one application may be connected to a particular serial port at a

given time. An attempt to open connection with busy serial port ends with
I/O error.

2.1.1 Connection parameters

Connection may be given additional parameters which are specified in CommCfg.

The convenient way to pass these parameters is through the structure con-

structor:

var comm

If some of parameters are

new Comm("usb0", new CommCfg{baudrate=19200, parity="even'"})

skipped, the defaults will be used.

Parameter | Default Description
baudrate platform | The speed of the port.
dependent
bitsperchar | 8 The number bits per character (7 or 8).
stopbits 1 The number of stop bits per char (1 or 2).
parity "none" The parity can be "odd", "even", or "none".
blocking true If true, wait for a full buffer when reading.
autocts true If true, wait for the CTS line to be on before
writing.
autorts true If true, turn on the RTS line when the input
buffer is not full. If false, the RTS line is
always on.

2.1.2 Example

The following example shows how a Comm connection would be used in a

simple loopback program.

new Comm("usb0", new CommCfg{baudrate=19200})

var comm =

var baudrate = comm.baudrate
var in = comm.open_input()
var out = comm.open_output()
var ch = 0

while (ch !'= ’Z7) {

out.write(ch)
ch = in.read()

}

in.close()
out.close()
comm.close()

2.2 Types

type Comm < StreamConnection;

COMM connection.

type CommCfg = {
baudrate: Int,
bitsperchar: Int,
stopbits: Int,
parity: String,
blocking: Bool,
autocts: Bool,
autorts: Bool

}

Configuration for the COMM connection. If some fields are unset, the de-
faults will be used when creating COMM connection.

2.3 Functions

def list_commports(): [String];

Returns list of available COMM ports. If no ports are available on the device,
then array with zero length is returned.

def Comm.new(port: String, cfg: CommCfg): Comm;

Creates new COMM connection with given port and configuration.
def Comm.get_baudrate(): Int;

Returns the baudrate of the serial port connection.

def Comm.set_baudrate(baudrate: Int);

Sets the baudrate for the serial port connection. If the requested baudrate
is not supported on the platform, then the system uses an alternate valid
setting. The set baudrate can be determined with get_baudrate.

	Overview
	comm.eh — Access to the COMM, IrDA, USB ports.
	Description
	Connection parameters
	Example

	Types
	Functions

