
API documentation for libui

Contents

1 Overview 2

2 ui.eh — Screen based user interface. 3
2.1 Description . 3

2.1.1 Screen menus . 3
2.1.2 Event handling . 3
2.1.3 Simple example . 4

2.2 Constants . 4
2.3 Types . 6
2.4 Functions . 7

3 stdscreens.eh — Useful builtin screens. 8
3.1 Description . 8

3.1.1 Message box . 9
3.2 Edit box . 9
3.3 List box . 9
3.4 Types . 9
3.5 Functions . 9

4 canvas.eh — Screen on which you can do arbitrary drawing. 11
4.1 Description . 12

4.1.1 Key events . 12
4.1.2 Action codes . 12
4.1.3 Pointer events . 13

4.2 Constants . 13
4.3 Types . 15
4.4 Functions . 15

1

5 graphics.eh — Graphical context for low-level drawing. 16
5.1 Description . 16
5.2 Constants . 16
5.3 Types . 17
5.4 Functions . 17

6 form.eh — A screen that contains a list of components. 21
6.1 Description . 21

6.1.1 Text item . 22
6.1.2 Hyperlink item . 23
6.1.3 Image item . 23
6.1.4 Hyperimage item . 23
6.1.5 Edit item . 23
6.1.6 Gauge item . 24
6.1.7 Date item . 24
6.1.8 Check item . 24
6.1.9 Radio item . 24
6.1.10 Popup item . 25

6.2 Constants . 25
6.3 Types . 25
6.4 Functions . 26

7 image.eh — Images. 31
7.1 Description . 31
7.2 Types . 31
7.3 Functions . 31

8 font.eh — Font handling. 32
8.1 Description . 32
8.2 Constants . 33
8.3 Functions . 33

9 ui edit.eh — Constants for text editing UI components. 34
9.1 Description . 34
9.2 Constants . 34

1 Overview

User interface library.

2

2 ui.eh — Screen based user interface.

use "ui.eh"

2.1 Description

Graphical application defines one or more full screen windows, in terminol-
ogy of Alchemy OS called Screens. You may choose from different types of
screens:

• the set of predefined screens in stdscreens.eh;

• canvas from canvas.eh on which you can draw freely;

• form from form.eh to build high level dialogs.

Initially application has no active screen (is in console mode). Switching
to graphical mode is done by calling ui set screen(screen). If argument is
null then screen is removed from the display and application switches back
to the console mode.

2.1.1 Screen menus

Every screen has a menu. This menu always contains item ”Switch to...”
which is used to switch between graphical applications. Custom menu items
may be attached to a screen or detached from it anytime. Menu items are
values of type Menu.

Menu item has type, label and priority. Priority determines how menus
are organized. The less priority number the higher menu item will be in the
menu. Menu type is a hint about intent of menu item. Depending on type
platform may assign menu items to different buttons or add icons to them.

2.1.2 Event handling

When user interacts with the screen, application generates an UIEvent value
that contains information about what happened and on which screen. These
events are then read by functions ui read event and ui wait event.

ui wait event() will wait until something happens on the screen, and
then return that event. This function is appropriate when you just passively
waiting for the event.

ui read event() returns immediately. If there are no events, it returns
null. It is appropriate for cases when you constantly need to do something
(redraw screen for example).

3

2.1.3 Simple example

use "ui"

use "stdscreens"

def main(args: [String]) {
// creating new screen

var screen = new MsgBox("This is an example of graphical program")

screen.title = "Example"

// attaching menu to the screen

var mclose = new Menu("Close", 1)

screen.add menu(mclose)

// showing screen to the user

ui set screen(screen)

// waiting for Close menu

var e = ui wait event()

while (e.value != mclose) {
e = ui wait event()

}
}

2.2 Constants

const MT SCREEN = 1;

Default menu type, with no specific intent.

const MT BACK = 2;

Menu item that returns the user to the previous screen.

const MT CANCEL = 3;

Menu item that is a standard negative answer to a dialog.

const MT OK = 4;

Menu item that is a standard positive answer to a dialog.

const MT HELP = 5;

Menu item that shows help information.

const MT STOP = 6;

4

Menu item that stops currently running operation.

const MT EXIT = 7;

Menu item for exiting from application.

const EV SHOW = -1;

Event of this kind is generated when screen gains focus. The field UIEvent.value

is null for this kind of event.

const EV HIDE = -2;

Event of this kind is generated when screen losts focus. The field UIEvent.value

is null for this kind of event.

const EV MENU = 1;

Event of this kind is generated when user chooses screen menu item. In this
case the field UIEvent.value will contain chosen Menu item.

const EV ITEM = 2;

Event of this kind is generated when user activates interactive item. In this
case the field UIEvent.value will contain activated Item.

const EV KEY = 3;

Event of this kind is generated by canvas on key press. The field UIEvent.value

will contain Int code of pressed key.

const EV KEY HOLD = 4;

Event of this kind is generated by canvas repeatedly if key is held down. The
field UIEvent.value will contain Int code of pressed key.

const EV KEY RELEASE = 5;

Event of this kind is generated by canvas on key release. The field UIEvent.value

will contain Int code of pressed key.

const EV PTR PRESS = 6;

Event of this kind is generated by canvas when the pointer is pressed (screen
touched). In this case UIEvent.value will contain Point value with coordi-
nates of pointer position.

const EV PTR RELEASE = 7;

5

Event of this kind is generated by canvas when the pointer is released. In
this case UIEvent.value will contain Point value with coordinates of pointer
position.

const EV PTR DRAG = 8;

Event of this kind is generated by canvas when the pointer is dragged. In
this case UIEvent.value will contain Point value with coordinates of pointer
position.

const EV ITEMSTATE = 9;

Event of this kind is generated by form when the state of an item in it
changes. In this case UIEvent.value will contain Item which changed state.

2.3 Types

type Screen < Any;

An application window which can be shown on the device display.

type Menu < Any;

Menu item that can be attached to a screen.

type UIEvent = {
kind: Int,

source: Screen,

value: Any

}

An event from the graphical user interface. Fields:

• kind - kind of event, one of predefined EV * constants;

• source - screen that generated this event;

• value - depends on the event kind. See description of each EV * constant
to find out particular value.

type Point = {
x: Int,

y: Int

}

2-dimensional point on the canvas. Used as return value in pointer events.

6

2.4 Functions

def ui set app title(title: String);

Sets default title for all screens of application.

def ui set app icon(icon: Image);

Sets application icon, which will appear in ”Switch to...” dialog.

def ui vibrate(millis: Int): Bool;

Requests device to vibrate for specified number of milliseconds. This function
returns immediately, vibration happens in background. To stop vibrator,
call this function with 0. Note, that device may limit or override duration of
vibration.

Returns true if vibration is supported, false otherwise.

def ui flash(millis: Int): Bool;

Requests device to flash backlight for specified number of milliseconds. The
exact effect is device dependent, examples are are cycling the backlight on
and off or from dim to bright repeatedly. This function returns immediately,
flashing happens in background. To stop flashing effect, call this function
with 0. Note, that device may limit or override duration of flashing.

Returns true if flashing is supported, false otherwise.

def Screen.get height(): Int;

Returns height of the screen available to application.

def Screen.get width(): Int;

Returns width of the screen available to application.

def Screen.get title(): String;

Returns title of the screen.

def Screen.set title(title: String);

Sets new title to the screen.

def Screen.is shown(): Bool;

Returns true if this screen is shown on the phone display.

def ui get screen(): Screen;

7

Returns current screen associated with the application. If application is in
console mode, this method returns null.

def ui set screen(scr: Screen);

Shows given screen on the display.

def Menu.new(text: String, priority: Int, mtype: Int = MT SCREEN): Menu;

Creates new menu item that can be attached to a screen. Menu label is
defined by text argument. Priority determines how menus are arranged in a
list - lower number means higher priority. Menu type is one of MT * constants
defined in this header.

def Menu.get text(): String;

Returns text label of this menu item.

def Menu.get priority(): Int;

Returns priority of given menu item.

def Screen.add menu(menu: Menu);

Attaches given menu item to the screen.

def Screen.remove menu(menu: Menu);

Detaches given menu item from the screen.

def ui read event(): UIEvent;

Reads next event from the event queue of the application. If there are no
pending events this function returns null.

def ui wait event(): UIEvent;

Reads next event from the event queue of the application. If there are no
pending events this function waits until an event is available.

3 stdscreens.eh — Useful builtin screens.

use "stdscreens.eh"

3.1 Description

This header defines set of screens which may be used to build user interface.

8

3.1.1 Message box

MsgBox is a screen that displays static text and can optionally contain icon.
This screen is convenient for making dialog windows.

3.2 Edit box

EditBox is a screen that allows user to enter and edit text.

3.3 List box

Screen that presents a list of strings from which user can pick one. Each
string can optionally be accompanied by icon.

3.4 Types

type MsgBox < Screen;

Screen which displays static text.

type EditBox < Screen;

Screen that allows user to enter and edit text.

type ListBox < Screen;

List of strings from which user can pick one.

3.5 Functions

def MsgBox.new(msg: String, icon: Image = null): MsgBox;

Creates new message box with given message and icon. If icon is null then
message box contains no icon.

def MsgBox.get text(): String;

Returns text contained in this message box.

def MsgBox.set text(text: String);

Sets new text to this message box.

def MsgBox.get image(): Image;

9

Returns image contained in this message box.

def MsgBox.set image(img: Image);

Sets new image to this message box.

def EditBox.new(mode: Int = EDIT ANY): EditBox;

Creates new editbox. Argument mode must be one of constants defined in
ui edit.eh.

def EditBox.get text(): String;

Returns text currently contained in this editbox.

def EditBox.set text(text: String);

Sets new text to this editbox.

def EditBox.get maxsize(): Int;

Returns maximum length of text this editbox can store.

def EditBox.set maxsize(size: Int);

Sets new maximum length of text this editbox can store. Note, that actual
maximum length may be overriden by platform.

def EditBox.get size(): Int;

Returns number of characters this editbox currently stores.

def EditBox.get caret(): Int;

Returns current input position. On most devices this function simply returns
cursor position. On some devices, however, it blocks and asks the user to set
position.

def ListBox.new(strings: [String], images: [Image], select: Menu): ListBox;

Creates new listbox. Array strings is used as the initial contents of the list.
If images is not null then it must have the same length as strings. The
contents of images array is used as icons for list items. Some elements of
images array may be null, the corresponding list item has no icon in this
case. Menu given as select argument is added to the screen and returned in
an event when user selects an item from the list.

def ListBox.get index(): Int;

10

Returns index of the selected item in the listbox.

def ListBox.set index(index: Int);

Sets selection to the item with the specified index in the listbox.

def ListBox.add(str: String, img: Image = null);

Adds new item to the end of the list. Argument img may be null.

def ListBox.insert(at: Int, str: String, img: Image = null);

Inserts new item at the specified position of the list. Argument img may be
null.

def ListBox.set(at: Int, str: String, img: Image = null);

Replaces item at the specified position of the list with given one.

def ListBox.delete(at: Int);

Removes item at the specified position of the list.

def ListBox.get string(at: Int): String;

Returns string part of the item at the specified position of the list.

def ListBox.get image(at: Int): Image;

Returns image part of the item at the specified position of the list.

def ListBox.clear();

Removes all items from this list.

def ListBox.len(): Int;

Returns current number of items in this list.

4 canvas.eh — Screen on which you can do

arbitrary drawing.

use "canvas.eh"

11

4.1 Description

This header provides a Screen called ”canvas”. Canvas provides facilities of
low-level drawing on the display and allows to read key presses and touch
events. Canvas is double-buffered, all drawings are performed on off-screen
buffer that is obtained with Canvas.graphics. After drawing is finished, Can-
vas.refresh should be called to present changes on the display.

4.1.1 Key events

If you press the key while the active screen is canvas, the UIEvent will be
generated. Its kind field will be EV KEY and its value field will contain
the code of the pressed key. Since returned type of the UIEvent.value is
not known at the time of compilation, you have to cast it manually

// read the next event

var e = ui wait event()

if (e.kind == EV KEY) {
// obtain key code

var key = e.value.cast(Int)

// if it is a character, print it in the terminal

if (key > 0) {
write(key)

}
}

Similarly, when key is released, EV KEY RELEASE event is generated.
Also, if key is held down, device may generate EV KEY HOLD event repeat-
edly. The last event type is optional, to test if device supports hold events,
use Canvas.has hold event.

This header defines key codes for standard phone keypad (keys 0..9, * and
#). If the phone has other alphanumeric keys, the code (most probably) will
be the corresponding Unicode character code. If phone has non-alphanumeric
keys (for example, joystick), those keys will (most probably) return negative
key codes. However, actual key codes may be different on distinct hardware.
If you want your application to be portable, you should use only the standard
key codes provided by this header. Or use the action codes.

4.1.2 Action codes

Since keypads differ from device to device, platform provides the following
portable action codes : UP, DOWN, LEFT, RIGHT, FIRE, ACT A, ACT B,
ACT C and ACT D. Each key code is mapped to at most one action code.

12

However, multiple keys may be mapped to the same action code. For ex-
ample, if the phone has joystick, both moving the joystick up and pressing
’2’ key will generate UP action. To get action code for the pressed key use
Canvas.action code(key).

4.1.3 Pointer events

If device has touch screen, the canvas may generate pointer events. To test
whether the device supports touch events, use Canvas.has ptr events and
Canvas.has ptrdrag event. For pointer events value field of the event will be
of type Point. Since compiler cannot predict type of the value, you have to
cast it to the needed type manually to extract values x and y.

var e = ui wait event()

if (e.kind == EV PTR PRESS) {
var p = e.value.cast(Point)

do something at(p.x, p.y)

}

4.2 Constants

const KEY 0 = ’0’;

Key code for key 0.

const KEY 1 = ’1’;

Key code for key 1.

const KEY 2 = ’2’;

Key code for key 2.

const KEY 3 = ’3’;

Key code for key 3.

const KEY 4 = ’4’;

Key code for key 4.

const KEY 5 = ’5’;

Key code for key 5.

const KEY 6 = ’6’;

13

Key code for key 6.

const KEY 7 = ’7’;

Key code for key 7.

const KEY 8 = ’8’;

Key code for key 8.

const KEY 9 = ’9’;

Key code for key 9.

const KEY STAR = ’*’;

Key code for key *.

const KEY HASH = ’#’;

Key code for key #.

const UP = 1;

Constant for the UP action.

const DOWN = 6;

Constant for the DOWN action.

const LEFT = 2;

Constant for the LEFT action.

const RIGHT = 5;

Constant for the RIGHT action.

const FIRE = 8;

Constant for the FIRE action.

const ACT A = 9;

Constant for the general purpose ”A” action.

const ACT B = 10;

Constant for the general purpose ”B” action.

const ACT C = 11;

Constant for the general purpose ”C” action.

const ACT D = 12;

Constant for the general purpose ”D” action.

14

4.3 Types

type Canvas < Screen;

Screen for low-level drawing.

4.4 Functions

def Canvas.new(full: Bool = false): Canvas;

Creates new canvas screen. If fullscreen is true then created canvas is in
fullscreen mode.

def Canvas.graphics(): Graphics;

Returns the graphical buffer for this canvas on which you can draw.

def Canvas.read key(): Int;

Returns key code of the last pressed key. If no key was pressed, returns
0. This is convenient function, if you want to receive only key presses from
canvas. If you want to receive other kinds of events, use event framework.

def Canvas.refresh();

Refreshes displayed content of the canvas.

def Canvas.action code(key: Int): Int;

Returns the action code for the specified key code. If given key has no
associated action, then 0 is returned.

def Canvas.has ptr events(): Bool;

Checks if the platform supports pointer press and release events. If returns
true, the canvas will generate EV PTR PRESS and EV PTR RELEASE
events.

def Canvas.has ptrdrag event(): Bool;

Checks if the platform supports pointer dragging events. If returns true, the
canvas will generate EV PTR DRAG event.

def Canvas.has hold event(): Bool;

Checks if the platform supports key hold event. If returns true, the canvas
will generate EV KEY HOLD event.

15

5 graphics.eh — Graphical context for low-

level drawing.

use "graphics.eh"

5.1 Description

Type Graphics represents graphical context which can be rendered both on
the display and to the offscreen images. Drawing primitives are provided for
text, images, lines, rectangles, rounded rectangles, and arcs. Rectangles and
arcs may also be filled with a solid color.

All drawing operations are performed with the current color of graphics.
New color is set with set color function in form of 0x00RRGGBB. You can spec-
ify color by its components using expression (red<<16)|(green<<8)|blue

where red, green and blue are numbers in range 0..255.
Line drawing operations are performed with the current stroke style of

graphics. New stroke style is set by set stroke and may be SOLID or DOT-
TED. Stroke style does not affect fill * functions, images or text.

Strings are rendered with the current font of graphics. New font is set by
set font. Font constants and functions are defined in font.eh.

5.2 Constants

const SOLID = 0;

Constant for the solid stroke style.

const DOTTED = 1;

Constant for the dotted stroke style.

const TR NONE = 0;

No transformation applied.

const TR ROT90 = 5;

Image is rotated clockwise by 90 degrees.

const TR ROT180 = 3;

Image is rotated clockwise by 180 degrees.

const TR ROT270 = 6;

16

Image is rotated clockwise by 270 degrees.

const TR HMIRROR = 2;

Image is mirrored horizontally.

const TR HMIRROR ROT90 = 7;

Image is mirrored horizontally and then rotated clockwise by 90 degrees.

const TR VMIRROR = 1;

Image is mirrored vertically.

const TR VMIRROR ROT90 = 4;

Image is mirrored vertically and then rotated clockwise by 90 degrees.

5.3 Types

type Graphics < Any;

Graphical context to draw on.

5.4 Functions

def Graphics.get color(): Int;

Returns current color to render with. Color is returned as 0x00RRGGBB value.

def Graphics.set color(rgb: Int);

Sets color used to draw new primitives. Color is specified in form of 0x00RRGGBB.

def Graphics.get stroke(): Int;

Returns the stroke style used for drawing operations.

def Graphics.set stroke(stroke: Int);

Sets the stroke style used for drawing lines, arcs, rectangles, and rounded
rectangles. This does not affect fill, text, and image operations. The value
of stroke must be one of SOLID, DOTTED.

def Graphics.get font(): Int;

Returns current font to render strings with.

17

def Graphics.set font(font: Int);

Sets new font to render new strings with.

def Graphics.draw line(x1: Int, y1: Int, x2: Int, y2: Int);

Draws a line between the coordinates (x1,y1) and (x2,y2) using the current
color and stroke style.

def Graphics.draw rect(x: Int, y: Int, w: Int, h: Int);

Draws the outline of the specified rectangle using the current color and stroke
style.

def Graphics.fill rect(x: Int, y: Int, w: Int, h: Int);

Fills the specified rectangle with the current color.

18

def Graphics.draw roundrect(x: Int, y: Int, w: Int, h: Int,

arcw: Int, arch: Int);

Draws the outline of the specified rounded corner rectangle using the current
color and stroke style.

def Graphics.fill roundrect(x: Int, y: Int, w: Int, h: Int,

arcw: Int, arch: Int);

Fills the specified rounded corner rectangle with the current color.

def Graphics.draw arc(x: Int, y: Int, w: Int, h: Int,

startangle: Int, arcangle: Int);

Draws the outline of a circular or elliptical arc covering the specified rect-
angle, using the current color and stroke style. The resulting arc begins at
startangle and extends for arcangle degrees. Angles are interpreted such that
0 degrees is at the 3 o’clock position. A positive value indicates a counter-
clockwise rotation while a negative value indicates a clockwise rotation.

19

def Graphics.fill arc(x: Int, y: Int, w: Int, h: Int,

startangle: Int, arcangle: Int);

Fills a circular or elliptical arc covering the specified rectangle. The re-
sulting arc begins at startangle and extends for arcangle degrees. Angles
are interpreted such that 0 degrees is at the 3 o’clock position. A positive
value indicates a counter-clockwise rotation while a negative value indicates
a clockwise rotation. The filled region consists of the ”pie wedge” region
bounded by the arc segment as if drawn by draw arc(), the radius extend-
ing from the center to this arc at startangle degrees, and radius extending
from the center to this arc at startangle+arcangle degrees.

def Graphics.fill triangle(x1: Int, y1: Int, x2: Int, y2: Int,

x3: Int, y3: Int);

Fills the specified triangle will the current color. The lines connecting each
pair of points are included in the filled triangle.

def Graphics.draw string(str: String, x: Int, y: Int);

Draws the specified string using the current font and color. The width and
height of the rendered string may be obtained using font height and str width
functions with current drawing font.

def Graphics.draw image(im: Image, x: Int, y: Int);

20

Draws specified image to the given location.

def Graphics.draw rgb(rgb: [Int], ofs: Int, scanlen: Int,

x: Int, y: Int, w: Int, h: Int, alpha: Bool);

Renders an ARGB pixel data to the given location. Pixels are stored as 24-bit
color with 8-bit alpha channel in form 0xAARRGGBB. The first pixel is stored at
the specified offset. The scanlen specifies the relative offset within the array
between the corresponding pixels of consecutive rows. Any value for scanlen
is acceptable (even negative values) provided that all resulting references are
within the bounds of the array. The ARGB data is rasterized horizontally
from left to right within each row. The ARGB values are rendered in the
region specified by x, y, width and height.

If alpha is false, then transparency is not processed and all values are
assumed to be fully opaque.

def Graphics.copy area(xsrc: Int, ysrc: Int, w: Int, h: Int,

xdst: Int, ydst: Int);

Copies the contents of a rectangular area (xsrc, ysrc, width, height) in given
graphics to a destination area, whose top left angle is located at (xdest,
ydest).

def Graphics.draw region(im: Image, xsrc: Int, ysrc: Int,

w: Int, h: Int, trans: Int, xdst: Int, ydst: Int);

Draws a region of the specified source image to the given location, possi-
bly transforming (rotating and reflecting) the image data using the chosen
transformation. The transformation is one of TR * constants.

6 form.eh — A screen that contains a list of

components.

use "form.eh"

6.1 Description

A form is a screen that contains a list of interactive components called Items.
Items are arranged vertically - one item per line.

21

Every item can have a text label assigned to it. Label appears before or
above an item and visually differs from contents of the item. Item label may
be received or set by functions Item.get label and Item.set label respectively.
You may specify empty string as label to create item without label.

When the state of the item is changed by the user, form generates EV ITEMSTATE
event.

6.1.1 Text item

Text item is non-interactive item that just displays plain text. Text may
contain line breaks (’\n’ characters) in which case it spans several rows.
Text also will be wrapped if it doesn’t fit in a single line.

Constructor: new TextItem(label, text)
Properties:

• text - text displayed by this item;

• font - font to display the text with. On how to define a font, see font.eh.

22

6.1.2 Hyperlink item

Text item which contains hyperlink. This item inherits all properties from
text item, but it can be activated, e.g. by setting focus on it and pressing
softkey or clicking it on touch screen. When item is activated EV ITEM
event is generated.

Constructor: new HyperlinkItem(label, text)

6.1.3 Image item

Image item is used to display an image.
Constructor: new ImageItem(label, image)
Properties:

• image - displayed image;

• alttext - a string to be shown in place of the image if the image exceeds
the capacity of the display.

6.1.4 Hyperimage item

Hyperimage is a hyperlink image. This item inherits all properties from
image item, but it can be activated, e.g. by setting focus on it and pressing
softkey or clicking it on touch screen. When item is activated EV ITEM
event is generated.

Constructor: new HyperimageItem(label, image)

6.1.5 Edit item

Edit item is an editable text field in which user can input arbitrary text.
Edit item has a maximum size which limits number of characters that may
be entered in it. With specifying input mode actual input may be restricted
to accept only numeric input/e-mail addresses, etc... and/or hide input char-
acters (e.g. when entering a password). Constants to use as mode argument
may be found in ui edit.eh.

Constructor: new EditItem(label, text, mode, size)
Properties:

• text - text currently contained within this item;

• maxsize - maximum number of characters this item can store;

• size (read only) - number of characters currently stored in this item;

• caret (read only) - current cursor position.

23

6.1.6 Gauge item

Gauge is a graphical item usually represented by horizontal bar or bar graph.
It contains integer value between 0 and maxvalue which user can change using
left/right buttons.

Constructor: new GaugeItem(label, max, init)
Properties:

• value - current value of the gauge;

• maxvalue - maximum value of the gauge.

6.1.7 Date item

Item for presenting and choosing date and time. Date is represented by Long
number of milliseconds since ”the epoch”. Functions to work with dates may
be found in time.eh.

Constructor: new DateItem(label, mode)
Properties:

• date - date currently stored in this item.

6.1.8 Check item

An item which have two states - checked and unchecked. Usually represented
as square box which is either empty or contains a tick mark or X.

Constructor: new CheckItem(label, text, checked)
Properties:

• checked - whether this item checked or not;

• text - text that follows check box. Do not be confused with label which
precedes an item. In the screenshot above all three checkboxes have
text assigned to them, but only the first is labeled.

6.1.9 Radio item

This item represents a list of strings only one of which can be selected at a
time. Selection usually visualized via ”radio buttons” preceding strings.

Constructor: new RadioItem(label, strings)
Properties:

• index - index of selected element, starting with 0.

24

6.1.10 Popup item

The compact version of radio item. Selected string is shown, all others are
hidden. When user chooses this item, popup menu appears, allowing to
choose one of strings.

Constructor: new PopupItem(label, strings)
Properties:

• index - index of selected element, starting with 0.

6.2 Constants

const DATE ONLY = 1;

Input mode for date item that allows to input only date.

const TIME ONLY = 2;

Input mode for date item that allows to input only time.

const DATE TIME = 3;

Input mode for date item that allows to input both date and time.

6.3 Types

type Form < Screen;

A screen that contains a list of interactive components.

type Item < Any;

A component of the form.

type TextItem < Item;

An item that displays plain text.

type HyperlinkItem < TextItem;

An interactive text item, activating which generates an event.

type ImageItem < Item;

An item that displays image.

type HyperimageItem < ImageItem;

25

An interactive image item, activating which generates an event.

type EditItem < Item;

An item in which user can input arbitrary text.

type GaugeItem < Item;

A graphical gauge display.

type DateItem < Item;

An item that allows to choose date and time.

type CheckItem < Item;

An item that can be checked and unchecked.

type RadioItem < Item;

A list of strings only one of which can be selected at a time.

type PopupItem < RadioItem;

A list of strings that uses popup menu.

6.4 Functions

def Form.new(): Form;

Creates new empty form.

def Item.get label(): String;

Returns label assigned to this item.

def Item.set label(label: String);

Sets new label to this item. If argument is null then item has no label.

def Form.add(item: Item);

Adds new item to the end of this form.

def Form.get(at: Int): Item;

Returns item in the specified row of this form.

def Form.set(at: Int, item: Item);

26

Sets new item in the specified row of this form replacing previous item.

def Form.insert(at: Int, item: Item);

Inserts new item in the specified row of this form moving all subsequent items
lower.

def Form.remove(at: Int);

Removes item in the specified row of this form.

def Form.size(): Int;

Returns current number of items in this form.

def Form.clear();

Removes all items from this form.

def TextItem.new(label: String, text: String): TextItem;

Creates new item that shows given text.

def TextItem.get text(): String;

Returns text contained in this text item.

def TextItem.set text(text: String);

Sets new text to this text item.

def TextItem.get font(): Int;

Returns font used in this text item.

def TextItem.set font(font: Int);

Sets font for this text item to display text with.

def HyperlinkItem.new(label: String, text: String);

Creates new hyperlink item with specified label and text.

def ImageItem.new(label: String, img: Image): ImageItem;

Creates new image item.

def ImageItem.get image(): Image;

Returns image contained in this item.

27

def ImageItem.set image(img: Image);

Sets new image to this item.

def ImageItem.get alttext(): String;

Gets the text string to be used if the image exceeds the device’s capacity to
display it.

def ImageItem.set alttext(text: String);

Sets the alternate text of the ImageItem. If null no alternate text is pro-
vided.

def HyperimageItem.new(label: String, img: Image): ImageItem;

Creates new hyperimage item with specified label and image.

def EditItem.new(label: String, text: String = "",

mode: Int = EDIT ANY, maxsize: Int = 50): EditItem;

Creates new editable text item. Argument mode must be one of EDIT *

constants from ui edit.eh. Argument maxsize specifies maximum length of
string that user can input in this item. Note that actual maximum size may
be even less than this argument due to platform limitations. To get actual
maximum size use get maxsize.

def EditItem.get text(): String;

Returns text currently stored in the editable item.

def EditItem.set text(text: String);

Sets new text to this edit item.

def EditItem.get maxsize(): Int;

Returns maximum length of text this item can store.

def EditItem.set maxsize(size: Int);

Sets new maximum length of text this item can store.

def EditItem.get size(): Int;

Returns number of characters this item currently stores.

def EditItem.get caret(): Int;

28

Returns current input position. On most devices this function simply returns
cursor position. On some devices, however, it blocks and asks the user to set
position.

def GaugeItem.new(label: String, max: Int, init: Int): GaugeItem;

Creates new gauge item. Gauge item represents Int value between zero and
max value and initially set to init. User can decrease or increase this value
by pressing left and right buttons respectively.

def GaugeItem.get value(): Int;

Returns current value of the gauge item.

def GaugeItem.set value(val: Int);

Sets new value to the gauge item.

def GaugeItem.get maxvalue(): Int;

Returns maximum value of the gauge item.

def GaugeItem.set maxvalue(val: Int);

Sets new maximum value to the gauge item.

def DateItem.new(label: String, mode: Int = DATE ONLY): DateItem;

Creates new item that allows to input date or/and time. Argument mode
must be one of constants DATE ONLY, TIME ONLY or DATE TIME. Date
item initially have no date set.

def DateItem.get date(): Long;

Returns date currently set in this date item. If date is not set then null is
returned.

def DateItem.set date(date: Long);

Sets new date to this date item.

def CheckItem.new(label: String, text: String, checked: Bool): CheckItem;

Creates new item that has one of two states - checked or unchecked.

def CheckItem.get checked(): Bool;

Tests whether this check item is checked.

29

def CheckItem.set checked(checked: Bool);

Checks or unchecks this check item.

def CheckItem.get text(): String;

Returns text of this check item.

def CheckItem.set text(text: String);

Sets new text to this check item.

def RadioItem.new(label: String, strings: [String]): RadioItem;

Creates new item where user can pick one from the list of choices. Array
argument must contain only String values, these values are used as choices
in this item. You may use zero length array ([]), if you want to fill this item
with strings later.

def RadioItem.get index(): Int;

Returns index of selected string in this item.

def RadioItem.set index(index: Int);

Selects new choice in this item.

def RadioItem.add(str: String);

Appends new string to the end of list.

def RadioItem.insert(at: Int, str: String);

Inserts new string in the specified position of this item.

def RadioItem.set(at: Int, str: String);

Replaces string in the specified position of this item.

def RadioItem.delete(at: Int);

Removes string in the specified position of this item.

def RadioItem.get(at: Int): String;

Returns string in the specified position of this item.

def RadioItem.clear();

Removes all strings from this item.

def RadioItem.len(): Int;

Returns current number of strings in this item.

def PopupItem.new(label: String, strings: [String]): PopupItem;

Creates new popup item with specified list of strings.

30

7 image.eh — Images.

use "image.eh"

7.1 Description

The Image type holds graphical image data. Images can be painted on
the screen or placed in visual elements of interface. Using constructor Im-
age.new you can create mutable image on which you can then draw. Binary
image data processed by functions image from file, image from data or im-
age from stream must be in one of image formats supported by the phone.
Note that the only format that is guaranteed to be supported is PNG.

7.2 Types

type Image < Any;

Graphical image data.

7.3 Functions

def Image.new(w: Int, h: Int): Image;

Creates new mutable image with given width and height. Initially every pixel
of the image is white. You can draw on this image by obtaining its Graphics
with Image.graphics.

def Image.graphics(): Graphics;

Creates a Graphics that renders to this image. This image must be mutable,
i.e. created by Image.new constructor.

def image from argb(argb: [Int], w: Int, h: Int, alpha: Bool): Image;

Creates an immutable image from a sequence of ARGB values, specified as
0xAARRGGBB. The ARGB data within the argb array is arranged horizontally
from left to right within each row, row by row from top to bottom. If alpha
is true, the high-order byte specifies opacity; that is, 0x00RRGGBB specifies a
fully transparent pixel and 0xFFRRGGBB specifies a fully opaque pixel. Inter-
mediate alpha values specify semitransparency. If alpha is false, the alpha
values are ignored and all pixels are treated as fully opaque.

def image from file(file: String): Image;

31

Reads image from file.

def image from stream(in: IStream): Image;

Decodes image data from input stream. Stream is left open after reading.

def image from data(data: [Byte]): Image;

Creates an immutable image which is decoded from the data stored in the
specified byte array.

def image from image(im: Image, x: Int, y: Int, w: Int, h: Int): Image;

Creates an immutable image using pixel data from the specified region of a
source image. This function can also be used if you want to create immutable
image from mutable one.

def Image.get argb(argb: [Int], ofs: Int, scanlen: Int, x: Int,

y: Int, w: Int, h: Int);

Obtains ARGB pixel data from the specified region of this image and stores
it in the array argb as integer values. The scanlen specifies the relative offset
within the array between the corresponding pixels of consecutive rows. In
order to prevent rows of stored pixels from overlapping, the absolute value of
scanlen must be greater than or equal to width. Negative values of scanlen
are allowed.

8 font.eh — Font handling.

use "font.eh"

8.1 Description

Font in Alchemy UI is specified as OR-combined mask of constants defined in
this header. For example, to set large italicized font on TextItem you should
use

item.set font(SIZE LARGE | STYLE ITALIC)

If requested font does not exist then system will provide closest match.

32

8.2 Constants

const FACE SYSTEM = 0;

Default font face for the system.

const FACE MONO = 32;

Monospace font face.

const FACE PROP = 64;

Proportional font face.

const STYLE PLAIN = 0;

Plain font style. Can be combined with other style constants.

const STYLE BOLD = 1;

Bold font style. Can be combined with other style constants.

const STYLE ITALIC = 2;

Italicized font style. Can be combined with other style constants.

const STYLE ULINE = 4;

Underlined font style. Can be combined with other style constants.

const SIZE SMALL = 8;

The ”small” system-dependent font size.

const SIZE MED = 0;

The ”medium” system-dependent font size.

const SIZE LARGE = 16;

The ”large” system-dependent font size.

8.3 Functions

def str width(font: Int, str: String): Int;

Returns the width given string will occupy when rendered with specified font.

def font height(font: Int): Int;

Returns the standard height of a line of text in specified font.

def font baseline(font: Int): Int;

Gets the distance in pixels from the top of the text to the text’s baseline in
specified font.

33

9 ui edit.eh — Constants for text editing UI

components.

use "ui edit.eh"

9.1 Description

This header defines constants that may be used to specify mode of text
editing components - EditItem and EditBox. Depending on input mode
component may restrict range of available characters or switch to special
input mode. For example, EDIT NUMBER mode accepts only numeric in-
put. In EDIT PASSWORD mode input is hidden, usually by displaying all
characters as "*" though platform may use other ways of obscuring.

There is no need to include this header explicitly with use directive - it
is used included automatically by both form.eh and stdscreens.eh.

9.2 Constants

const EDIT ANY = 0;

The user is allowed to enter any text. The input is not restricted and may
contain line breaks.

const EDIT EMAIL = 1;

The user is allowed to enter an e-mail address. The input is restricted to
characters allowed in e-mail addresses.

const EDIT NUMBER = 2;

The user is allowed to enter only an integer value. The input is restricted
to digits and minus sign. Unless the text of component is empty, it will be
successfully parsable using String.toint.

const EDIT PHONE = 3;

The user is allowed to enter a phone number. The exact set of characters
allowed is specific to the device and to the device’s network and may include
non-numeric characters, such as a ”+” prefix character.

const EDIT URL = 4;

The user is allowed to enter a URL. The input is restricted to characters
allowed in URL addresses.

34

const EDIT DECIMAL = 5;

The user is allowed to enter numeric values with optional decimal fractions
such as ”-123”, ”0.123”, or ”.5”. The input is restricted so that only decimal
numbers are allowed. Unless the text of component is empty, it will be
successfully parsable using String.todouble.

const EDIT PASSWORD = 0x10000;

Indicates that text entered in a editbox is confidential data that should be
obscured. This mode is useful for entering confidential information such as
passwords. This mode can be OR-combined with another EDIT * mode, for
example (EDIT NUMBER|EDIT PASSWORD) is allowed.

35

	Overview
	ui.eh — Screen based user interface.
	Description
	Screen menus
	Event handling
	Simple example

	Constants
	Types
	Functions

	stdscreens.eh — Useful builtin screens.
	Description
	Message box

	Edit box
	List box
	Types
	Functions

	canvas.eh — Screen on which you can do arbitrary drawing.
	Description
	Key events
	Action codes
	Pointer events

	Constants
	Types
	Functions

	graphics.eh — Graphical context for low-level drawing.
	Description
	Constants
	Types
	Functions

	form.eh — A screen that contains a list of components.
	Description
	Text item
	Hyperlink item
	Image item
	Hyperimage item
	Edit item
	Gauge item
	Date item
	Check item
	Radio item
	Popup item

	Constants
	Types
	Functions

	image.eh — Images.
	Description
	Types
	Functions

	font.eh — Font handling.
	Description
	Constants
	Functions

	ui_edit.eh — Constants for text editing UI components.
	Description
	Constants

