
API documentation for mint

Contents

1 Overview 2

2 mint/config.eh — Mint preferences and reading of configu-
ration files. 2
2.1 Description . 2
2.2 Types . 2
2.3 Functions . 3

3 mint/themeicon.eh — Icons from icon theme. 3
3.1 Description . 3

3.1.1 Where to install custom icons 3
3.1.2 Standard icons . 4

3.2 Constants . 6
3.3 Functions . 11

4 mint/dialog.eh — Common dialogs. 11
4.1 Description . 12
4.2 Functions . 12

5 mint/eventloop.eh — Event handling for graphical applica-
tions. 14
5.1 Description . 14
5.2 Types . 15
5.3 Functions . 15

6 mint/actionlist.eh — List of actions to implement program
menus. 16
6.1 Description . 16
6.2 Types . 17
6.3 Functions . 17

1

1 Overview

Mobile interface toolkit. Mint library is a set of goodies for desktop applica-
tions. It allows applications to use common theme, provides standard dialogs
and an implementation of event loop.

2 mint/config.eh — Mint preferences and read-

ing of configuration files.

use "mint/config.eh"

2.1 Description

This header gives direct access to the Mint preferences and also provides
function to read arbitrary configuration file.

The following preferences are available in the current version of Mint:

iconTheme Name of the icon theme.

listIconSize Size of icons used in lists and menus.

dialogIconList Size of icons used in dialog windows.

dialogFont Font used in dialog windows.

2.2 Types

type Config = {
iconTheme: String = "",

listIconSize: Int = 16,

dialogIconSize: Int = 32,

dialogFont: Int = FACE SYSTEM | SIZE MED | STYLE PLAIN

}

Mint preferences. Use getConfig() function to obtain preferences for your
system (stored in /cfg/mintprefs). If preferences file does not exist returned
structure is initialized with default values (shown above).

2

2.3 Functions

def getConfig(): Config;

Returns Mint preferences structure. The structure can be modified.

def readCfgFile(file: String): Dict;

Reads configuration file. This function reads all strings in form key=value

from the specified file and returns them in a dictionary. All strings that are
not in this form are ignored.

3 mint/themeicon.eh — Icons from icon theme.

use "mint/themeicon.eh"

3.1 Description

Icon themes provide stock of icons to use in applications. Using themeIcon()
function you can load one of standard icons or custom icon for preferred size.
This function accepts two arguments - name and size. You can use special
constants SIZE LIST and SIZE DIALOG to use sizes from preferences.

Note: Memory and storage on mobile device can be very limited so it
is possible that no icon set is installed at all. In this case themeIcon() will
return null, be sure to handle this case in your interface.

3.1.1 Where to install custom icons

If you want to provide just one icon, install it under /res/icons. For example

/res/icons/foo.png

This icon will be returned if you call themeIcon("foo"). If you want to
provide several sizes of icons, install them under /res/icons/size. Like

/res/icons/16/foo.png

/res/icons/24/foo.png

/res/icons/32/foo.png

/res/icons/48/foo.png

It is recommended to stick to these four sizes.
Finally, if you want provide different icons for some icon themes, install

them in corresponding theme folders (but be sure to install generic icons
as well). If themeIcon(name, size) is called the sequence of locations in
which icons are searched is the following:

3

/res/icons/iconTheme /size /name.png

/res/icons/size /name.png

/res/icons/name.png

/res/icons/iconTheme /size /image-missing.png

3.1.2 Standard icons

Icon themes currently provide 66 standard icons. You can use corresponding
constants as arguments for themeIcon() to get them. Icons are the following:

File icons
FOLDER for folders
FILE BINARY for binary file types and files with unknown content
FILE AUDIO for audio file types
FILE EXECUTABLE for executable file types
FILE IMAGE for image file types
FILE INTERNET for HTML pages, links and similar file types
FILE PACKAGE for archives, packages and similar file types
FILE TEXT for text file types
FILE VIDEO for video file types

Dialog choices
DIALOG YES for positive answer in dialog
DIALOG NO for negative answer in dialog
DIALOG CLOSE for closing dialog without taking any action

Informative dialog icons
DIALOG ERROR for error message dialogs
DIALOG INFORMATION for information message dialogs
DIALOG QUESTION for question type dialogs
DIALOG WARNING for warning message dialogs

Navigation icons
GO UP for ”go up” action
GO DOWN for ”go down” action
GO TOP for ”go to the top” action
GO BOTTOM for ”go to the bottom” action
GO PREVIOUS for ”go to the previous element” action
GO NEXT for ”go to the next element” action
GO FIRST for ”go to the first element” action
GO LAST Icon for ”go to the last element” action
GO HOME for ”go to the home location” action
GO JUMP for ”jump to the specified location” action

4

Media icons
MEDIA EJECT for the eject action of a media player or a file manager
MEDIA PAUSE for the pause action of a media player
MEDIA RECORD for the record action of a media player
MEDIA SEEK BACKWARD for the seek backward action of a media player
MEDIA SEEK FORWARD for the seek forward action of a media player
MEDIA SKIP BACKWARD for the skip backward action of a media player
MEDIA SKIP FORWARD for the skip forward action of a media player
MEDIA START for the start or play action of a media player
MEDIA STOP for the stop action of a media player

Document related icons
DOCUMENT NEW for ”create new document” action
FOLDER NEW for ”create new folder” action
DOCUMENT OPEN for ”open existing document” action
DOCUMENT PREVIEW for ”preview document” action
DOCUMENT RECENT for ”open recent document” action
DOCUMENT SAVE for ”save current document” action
DOCUMENT SAVE AS for ”save current document in a new location” action

View related icons
VIEW FULLSCREEN for ”view fullscreen” action
VIEW REFRESH for ”refresh view” action
VIEW RESTORE for ”restore view from fullscreen” action
ZOOM IN for ”zoom in” action
ZOOM OUT for ”zoom out” action
ZOOM ORIGINAL for ”restore original zoom” action

Action icons
EDIT COPY for ”copy” action
EDIT CUT for ”cut” action
EDIT DELETE for ”delete” action
EDIT FIND for ”find” action
EDIT PASTE for ”paste” action
EDIT REDO for ”redo” action
EDIT RENAME for ”rename” action
EDIT REPLACE for ”replace” action
EDIT UNDO for ”undo” action
LIST ADD for ”add element to the list” action
LIST REMOVE for ”remove element from the list” action
APP EXIT for ”exit from application” action

5

Other icons
APP CONFIGURE for settings dialogs, etc.
APP INTERNET for actions or applications that go to the internet
APP MEDIA for media actions or applications
APP PLUGIN for managing packages or plugins
APP TERMINAL for launching terminal or something in terminal
IMAGE MISSING used when another icon is not found

3.2 Constants

const SIZE LIST = 0;

Constant to use in themeIcon() for list icons. The size will be the same as
returned by Config.listIconSize.

const SIZE DIALOG = -1;

Constant to use in themeIcon() for dialog icons. The size will be the same
as returned by Config.dialogIconSize.

const IMAGE MISSING = "image-missing";

Icon used as a placeholder when some another icon is not found.

const FOLDER = "folder";

Icon for folders in the file system or other hierarchical groups.

const FILE BINARY = "file-binary";

Icon for binary file types and files with unknown content.

const FILE AUDIO = "file-audio";

Icon for audio file type.

const FILE EXECUTABLE = "file-executable";

Icon for executable file types.

const FILE IMAGE = "file-image";

Icon for image file types.

const FILE INTERNET = "file-internet";

Icon for HTML pages, links and similar file types.

6

const FILE PACKAGE = "file-package";

Icon for archives, packages and similar file types.

const FILE TEXT = "file-text";

Icon for text file types.

const FILE VIDEO = "file-video";

Icon for video file types.

const DIALOG YES = "dialog-yes";

Icon for positive answer in dialog.

const DIALOG NO = "dialog-no";

Icon for negative answer in dialog.

const DIALOG CLOSE = "dialog-close";

Icon for closing dialog without taking any action.

const DIALOG ERROR = "dialog-error";

Icon for error message dialogs.

const DIALOG INFORMATION = "dialog-information";

Icon for information message dialogs.

const DIALOG QUESTION = "dialog-question";

Icon for question type dialogs.

const DIALOG WARNING = "dialog-warning";

Icon for warning message dialogs.

const GO UP = "go-up";

Icon for ”go up” action.

const GO DOWN = "go-down";

Icon for ”go down” action.

const GO TOP = "go-top";

Icon for ”go to the top” action.

7

const GO BOTTOM = "go-bottom";

Icon for ”go to the bottom” action.

const GO PREVIOUS = "go-previous";

Icon for ”go to the previous element” action.

const GO NEXT = "go-next";

Icon for ”go to the next element” action.

const GO FIRST = "go-first";

Icon for ”go to the first element” action.

const GO LAST = "go-last";

Icon for ”go to the last element” action.

const GO HOME = "go-home";

Icon for ”go to the home location” action.

const GO JUMP = "go-jump";

Icon for ”jump to the specified location” action.

const MEDIA EJECT = "media-eject";

Icon for the eject action of a media player or a file manager.

const MEDIA PAUSE = "media-pause";

Icon for the pause action of a media player.

const MEDIA RECORD = "media-record";

Icon for the record action of a media player.

const MEDIA SEEK BACKWARD = "media-seek-backward";

Icon for the seek backward action of a media player.

const MEDIA SEEK FORWARD = "media-seek-forward";

Icon for the seek forward action of a media player.

const MEDIA SKIP BACKWARD = "media-skip-backward";

Icon for the skip backward action of a media player.

8

const MEDIA SKIP FORWARD = "media-skip-forward";

Icon for the skip forward action of a media player.

const MEDIA START = "media-start";

Icon for the start or play action of a media player.

const MEDIA STOP = "media-stop";

Icon for the stop action of a media player.

const DOCUMENT NEW = "document-new";

Icon for ”create new document” action.

const FOLDER NEW = "folder-new";

Icon for ”create new folder” action.

const DOCUMENT OPEN = "document-open";

Icon for ”open existing document” action.

const DOCUMENT PREVIEW = "document-preview";

Icon for ”preview document” action.

const DOCUMENT RECENT = "document-recent";

Icon for ”open recent document” action.

const DOCUMENT SAVE = "document-save";

Icon for ”save current document” action.

const DOCUMENT SAVE AS = "document-save-as";

Icon for ”save current document in a new location” action.

const VIEW FULLSCREEN = "view-fullscreen";

Icon for ”view fullscreen” action.

const VIEW REFRESH = "view-refresh";

Icon for ”refresh view” action.

const VIEW RESTORE = "view-restore";

Icon for ”restore view from fullscreen” action.

9

const ZOOM IN = "zoom-in";

Icon for ”zoom in” action.

const ZOOM OUT = "zoom-out";

Icon for ”zoom out” action.

const ZOOM ORIGINAL = "zoom-original";

Icon for ”restore original zoom” action.

const EDIT COPY = "edit-copy";

Icon for ”copy” action.

const EDIT CUT = "edit-cut";

Icon for ”cut” action.

const EDIT DELETE = "edit-delete";

Icon for ”delete” action.

const EDIT FIND = "edit-find";

Icon for ”find” action.

const EDIT PASTE = "edit-paste";

Icon for ”paste” action.

const EDIT REDO = "edit-redo";

Icon for ”redo” action.

const EDIT RENAME = "edit-rename";

Icon for ”rename” action.

const EDIT REPLACE = "edit-replace";

Icon for ”replace” action.

const EDIT UNDO = "edit-undo";

Icon for ”undo” action.

const LIST ADD = "list-add";

Icon for ”add element to the list” action.

10

const LIST REMOVE = "list-remove";

Icon for ”remove element from the list” action.

const APP EXIT = "app-exit";

Icon for ”exit from application” action.

const APP CONFIGURE = "app-configure";

Icon for launching application settings.

const APP INTERNET = "app-internet";

Icon for action or application that uses internet.

const APP MEDIA = "app-media";

Icon for audio/video applications or actions.

const APP PLUGIN = "app-plugin";

Icon for applications or menus that manage packages or plugins.

const APP TERMINAL = "app-terminal";

Icon for terminal actions or applications.

3.3 Functions

def themeIcon(name: String, size: Int = SIZE LIST): Image;

Returns icon from icon theme. If there is no icon for given size then closest
size is returned. Icons are NOT rescaled. If there is no icon for given name
then IMAGE MISSING icon is returned. If IMAGE MISSING icon is missing
as well, null is returned. Constants SIZE LIST and SIZE DIALOG may be
specified to use sizes from settings.

4 mint/dialog.eh — Common dialogs.

use "mint/dialog.eh"

11

4.1 Description

This header provides a set of dialog screens to use in applications. Dialog is
a modal screen that shows up, requests information, returns requested value
and turns back to the previous screen. Many of dialogs may contain icons
which are specified as string identifiers. The icon that dialog will contain is
exactly as returned by

themeIcon(name , SIZE DIALOG)

4.2 Functions

def Screen.run(): Menu;

Runs modal screen. This method can be used to implement custom dialogs.
It shows the screen and blocks until menu item is chosen. Then previous
screen of application is restored and chosen menu item is returned.

def showInfo(title: String, msg: String, timeout: Int = 0);

Shows information message. This function presents dialog with a text mes-
sage and DIALOG INFORMATION icon. If timeout is specified and positive
then the dialog will automatically disappear after specified number of mil-
liseconds.

def showWarning(title: String, msg: String, timeout: Int = 0);

Shows warning message. This function presents dialog with a text message
and DIALOG WARNING icon. If timeout is specified and positive then the
dialog will automatically disappear after the specified number of milliseconds.

def showError(title: String, msg: String, timeout: Int = 0);

Shows error message. This function presents dialog with a text message and
DIALOG ERROR icon. If timeout is specified and positive then the dialog
will automatically disappear after the specified number of milliseconds.

def showMessage(title: String, msg: String, icon: String = null,

timeout: Int = 0);

Shows message dialog. This function presents dialog with a text message,
optional icon and ”Close” command. If timeout is specified and positive
then the dialog will automatically disappear after the specified number of
milliseconds.

12

def showYesNo(title: String, msg: String, y: String = "Yes",

n: String = "No"): Bool;

Shows question dialog with two variants. This function presents dialog with
a text message and two commands which by default are ”Yes” and ”No”.
The function returns true if the first command is chosen and false otherwise.

def showOption(title: String, msg: String, variants: [String],

icon: String = null): Int;

Shows question dialog with specified list of options. This function presents
dialog with a text message and a set of menu items. Captions of menu
items are read from the variants array. The function returns index of chosen
variant in range from 0 to variants.len-1.

def showList(title: String, lines: [String],

icons: [String] = null): Int;

Shows dialog with a list of choices. This function presents ListBox with given
text strings and icons. If icons array is not null then it must be the same
length as lines. The dialog has two menu commands: ”Ok” and ”Cancel”.
The function returns index of selected element or -1 if Cancel is pressed.

def showInput(title: String, msg: String = "", text: String = "",

mode: Int = EDIT ANY, maxsize: Int = 50): String;

Shows dialog with an input field. This function presents dialog with a mes-
sage and an input field. Argument mode represents kind of information that
can be entered in the input field and must be one of constants defined in
ui edit.eh. The dialog has two menu commands: ”Ok” and ”Cancel”. The
function returns entered string or null if Cancel is pressed.

def showFontDialog(title: String, font: Int = 0): Int;

Shows dialog which allows to choose font. The dialog has two menu com-
mands: ”Ok” and ”Cancel”. The function returns font specifier (see font.eh)
or -1 if Cancel is pressed.

def showColorDialog(title: String, color: Int = 0): Int;

Shows dialog which allows to choose color. The dialog has two menu com-
mands: ”Ok” and ”Cancel”. The function returns color as 32-bit integer in
form 0x00RRGGBB or -1 if Cancel is pressed.

def showFolderDialog(title: String, dir: String = null): String;

13

Shows dialog which allows to choose directory. The dialog has two menu
commands: ”Ok” and ”Cancel” and also allows to create new dialog. The
function returns path to the directory or null if Cancel is pressed.

def showOpenFileDialog(title: String, dir: String = null,

filters: [String] = null): String;

Shows dialog which allows to choose existing file. The dialog has two menu
commands: ”Ok” and ”Cancel”. It only allows to choose existing file. The
function returns path to the file or null if Cancel is pressed.

def showSaveFileDialog(title: String, dir: String = null,

filters: [String] = null): String;

Shows dialog which allows to choose or create file. The dialog has two menu
commands: ”Ok” and ”Cancel”. It also allows creating new files and asks
permission to overwrite if existing file is chosen. The function returns path
to the file or null if Cancel is pressed.

5 mint/eventloop.eh — Event handling for

graphical applications.

use "mint/eventloop.eh"

5.1 Description

This header provides automated handling of UI events. To use it just assign
needed action to the desired event and start a loop. The following example
shows this approach.

/* MINT hello world. */

use "mint/eventloop"

use "stdscreens"

use "ui"

def main(args: [String]) {
// create screen

var msgbox = new MsgBox("Hello, world!")

// create event loop for it

var loop = new EventLoop(msgbox)

// add menu item to exit

14

loop.onMenu(new Menu("Ok", 1), loop.quit)

// start processing of events

loop.start()

}

5.2 Types

type EventLoop < Any;

Event processing loop.

5.3 Functions

def EventLoop.new(scr: Screen);

Creates new event loop for specified screen.

def EventLoop.start();

Starts this event loop. This method shows screen that was used in constructor
of this loop and blocks until quit() method is called.

def EventLoop.quit();

Stops this event loop. This method hides also hides the screen.

def EventLoop.onShow(handler: ());

Add action when screen shows or gains focus. If argument is null then action
is removed.

def EventLoop.onHide(handler: ());

Add action when screen hides or loses focus. If argument is null then action
is removed.

def EventLoop.onMenu(menu: Menu, handler: ());

Add menu element and the corresponding action to the screen. If argument
is null then specified menu element is removed.

def EventLoop.onItem(item: Item, handler: ());

Add action when interactive form item is activated. Interactive form items
are HyperlinkItem and HyperimageItem. If argument is null then action is
removed.

15

def EventLoop.onStateChange(item: Item, handler: ());

Add action when a form item is edited by user. If argument is null then
action is removed.

def EventLoop.onKeyPress(handler: (Int));

Add action when key is pressed. Argument of handler receives key code. If
argument is null then action is removed.

def EventLoop.onKeyRelease(handler: (Int));

Add action when key is released. Argument of handler receives key code. If
argument is null then action is removed.

def EventLoop.onKeyHold(handler: (Int));

Add action when key is held. Argument of handler receives key code. If
argument is null then action is removed.

def EventLoop.onPtrPress(handler: (Int, Int));

Add action when screen is touched. Argument of handler receives touch
coordinates. If argument is null then action is removed.

def EventLoop.onPtrDrag(handler: (Int, Int));

Add action when screen is touched and dragged. Argument of handler re-
ceives drag coordinates. If argument is null then action is removed.

def EventLoop.onPtrRelease(handler: (Int, Int));

Add action when touch is removed from screen. Argument of handler receives
coordinates. If argument is null then action is removed.

6 mint/actionlist.eh — List of actions to im-

plement program menus.

use "mint/actionlist.eh"

6.1 Description

This header provides ActionList screen which can be used to implement
application menus. This screen presents set of choices to the user and calls
action assigned to chosen element.

16

6.2 Types

type ActionList < Any;

Screen that represents list of actions.

6.3 Functions

def ActionList.new(title: String);

Creates new ActionList with specified title.

def ActionList.start(useCancel: Bool = true);

Shows list to the user and waits for response. When user selects element, the
list closes and the corresponding action is executed. If useCancel is true then
the list also has ”Cancel” command which allows to close it without taking
any action.

def ActionList.clear();

Removes all elements from this list.

def ActionList.add(text: String, icon: String, action: ());

Adds element to the end of this list. Icon name is a string following the
specification of a mint/themeicon.eh header.

def ActionList.set(index: Int, text: String, icon: String, action: ());

Sets new value to the element of this list. Icon name is a string following the
specification of a mint/themeicon.eh header.

17

	Overview
	mint/config.eh — Mint preferences and reading of configuration files.
	Description
	Types
	Functions

	mint/themeicon.eh — Icons from icon theme.
	Description
	Where to install custom icons
	Standard icons

	Constants
	Functions

	mint/dialog.eh — Common dialogs.
	Description
	Functions

	mint/eventloop.eh — Event handling for graphical applications.
	Description
	Types
	Functions

	mint/actionlist.eh — List of actions to implement program menus.
	Description
	Types
	Functions

