
Ether programming language

Sergey Basalaev

June 7, 2013

Abstract

This document is a brief description of Ether programming lan-
guage for Alchemy OS.

Contents

1 Building a program 2

2 Program structure 3
2.1 Comments . 3
2.2 Functions . 3
2.3 Main function . 4
2.4 Includes . 4

3 Variables 5
3.1 Declaring variables . 5
3.2 Local and global variables . 5
3.3 Constants . 6

4 Types 6
4.1 Numeric types . 7
4.2 Bool type . 7
4.3 String type . 7
4.4 Arrays . 7
4.5 Structures . 8
4.6 Functional types . 10

1

5 Expressions 10
5.1 Constants . 10
5.2 Operators . 12
5.3 Type cast . 14
5.4 Block expression . 14
5.5 Conditional expression . 15
5.6 Switch expression . 15
5.7 While loops . 16
5.8 For loop . 16
5.9 Anonymous functions . 16
5.10 Try/catch operator . 17

6 Special functions 17
6.1 Methods . 17
6.2 Constructors . 19
6.3 Array operators . 19
6.4 Properties . 20
6.5 Conversion to a string . 20
6.6 Equality operators . 20
6.7 Comparison operators . 21
6.8 Other operators . 22

A Appendix: Compiler options 22

B Appendix: Warning messages 23

1 Building a program

Let’s start with the usual example – ”Hello world” in Ether. To try it create
file hello.e in the /home directory with the following contents:

/* EXAMPLE: Hello world */

use "io"

def main(args: [String]) {
println("Hello, world!")

}

To convert this program in binary executable format you need to compile
it. This is done with ex, Ether compiler for Alchemy OS. Open Terminal
and execute the following command:

2

ex hello.e -o hello

This command will produce executable file named hello. To run this file
type in terminal:

./hello

2 Program structure

Ether sources are written in UTF-8 encoding. Newlines are not meaningful.

2.1 Comments

Comments are completely ignored by compiler.

// This comment spans till the end of the line

/*

This is a block comment.

It can span several lines.

*/

2.2 Functions

Ether program is a set of functions. Function is defined using one of the
following declarations:

// this is a function called ’name’

def name(arg1: Type1, ..., argN: TypeN): ReturnType {
expr1

expr2

...

lastexpr

}

// this is a function without return type (procedure)

def proc(arg1: Type1, ..., argN: TypeN) {
expr1

expr2

...

lastexpr

}

3

When function is invoked, its expressions are evaluated sequentially. If
return type is specified, then result of the last expression is used as return
value. If return type is not specified, function does not return a value.

Simple functions can also be defined using “function=expr” syntax like:

// returns maximum of two numbers

def max(a: Int, b: Int): Int = if (a>b) a else b

2.3 Main function

Each program must have a function called ”main”. This function is in-
voked when program starts and accepts command-line arguments as array of
strings.

def main(args: [String]): Int {
...

}

// can be also defined as procedure

def main(args: [String]) {
...

}

The ”main” function returns ”program exit code”. Usually, zero exit
code means that program ended normally and non-zero exit code indicates
an error. If ”main” is declared as procedure, program always ends with zero
exit code.

2.4 Includes

There are many functions provided by standard Alchemy libraries. To use
one of them you need to include corresponding header file in your program.
This is done using the following syntax:

use "header name"

Standard header files are located in /inc directory (take a look at them).
To learn more about these headers and functions they contain proceed to
API reference.

4

http://alchemy-os.org/docs/api/2.1/

3 Variables

3.1 Declaring variables

Variables are declared using var keyword. In the next example program asks
user for input, stores entered text in a variable and then uses that variable
in output.

/* EXAMPLE: Asking user for input. */

use "io"

def main(args: [String]) {
println("Enter your name:")

var name = readline()

println("Hello, " + name + "!")

}

Ether has strong typing and every variable is of certain type. Type of
variable is determined from expression that is assigned to it. In some cases
you might want to specify type manually. This can be done using the follow-
ing syntax:

// declaring string variable

var str: String

// declaring and assigning in one line

var a: Any = 3.14

Name of variable may include letters, numbers and underscore characters
(’ ’). Names are case sensitive, i.e. doo, Doo and DOO are three different
variables. The following words are reserved and can’t be used as variable
names.

cast catch const def

do else false for

if new null super

switch this true try

type use var while

3.2 Local and global variables

Variable declared in a function is local, i.e. it is visible and can be used only
inside that function. If variable is defined in a block {...} then it is visible

5

only inside that block. You may also define variables at outer level making
them global.

Note: local variables always work faster than global.

3.3 Constants

Constant is a variable value of which cannot be changed after creation. Con-
stants are created with the same syntax as variables, but using the keyword
const. Constants can also be declared on outer level, in this case value
assigned to them must be a literal expression (number, string or boolean
value). Note, that compiler is smart enough to evaluate constant from sim-
ple expression, so you can safely use something like

const DEBUG = true

const WORD = if (DEBUG) "Debug" else "Release"

def main(args: [String]) {
println("This is " + WORD + " build")

}

4 Types

Ether has hierarchical type system. The most basic type is Any. All others
are its subtypes. Subtypes inherit all properties and methods from parent
types but may define their own.

/* Builtin types */

Any

-numeric types

-Byte

-Short

-Char

-Int

-Long

-Float

-Double

-Array

-all array types

-Structure

6

-all structure types

-Function

-all function types

-String

-Error

Type Any represents value of any type. It is used generally when the type
of the value is unknown.

4.1 Numeric types

Values of numeric types are all kinds of numbers. Numbers can part in
arithmetic expressions.

Type Description
Byte Single byte as signed 8-bit integer in range from -128 to 127.
Short Signed 16-bit integer in range from -32767 to 32768.
Char Single unicode character as number in range from 0 to 65535.
Int Signed 32-bit integer number in range from -231 to 231-1.
Long Signed 64-bit integer numbers between -263 and 263-1, inclusive.
Float Single precision (32-bit) floating point number.
Double Double precision (64-bit) floating point number.

4.2 Bool type

Type Bool represents boolean logical values true and false. Boolean values
are used in logical expressions and conditional operators.

4.3 String type

Strings represent text information as a sequence of characters. Strings in
Ether are immutable. Any value can be converted to a string (e. g. for
printing) using tostr() method.

4.4 Arrays

Array is a fixed length sequence of elements of the same type. Array type
is defined as element type enclosed in square brackets (for example, [Int]).
There are three constructs that create new array.

(1) The following code creates array of 10 String elements. Elements of
array are initially uninitialized (are equal to null).

var array = new [String](10)

7

(2) Array can be created by listing all its elements. Length of array is
a number of elements in list. Type of array is determined from types of
elements.

// This array is [Int]

var numbers = [1, 2, 3, 4, 5]

// This array is [Any] because it contains values of different types

var things = [3.14, "Pi"]

// Zero-length array is also [Any]

var zerolength = []

(3) Finally you can specify both type of array and its elements.

// will be [1.0, 2.0, 3.0]

var dbl = new [Double] { 1, 2, 3 }

The length of the array can be obtained using array.len. Array elements
are indexed from 0 to len-1. To access i-th element of array syntax array[i]

is used.

/* EXAMPLE: work with arrays. */

use "io"

def main(args: [String]) {
// getting length of array

println("Number of arguments: " + args.len)

// printing all elements

for (var i=0, i<args.len, i+=1) {
println("Argument #" + i + ": " + args[i])

}
}

4.5 Structures

Structure is a composite type that contains a set of values. Structure types
are defined as follows:

type Struct {
field1: Type1,

field2: Type2,

...

fieldN: TypeN

}

8

Structures are created using constructors. If no self-defined constructor
provided (see constructors), two default constructors are provided:

// compact constructor

var s = new Struct(val1, val2, ..., valN)

// extended constructor

var t = new Struct {
field1 = val1,

field2 = val2,

...

fieldN = valN

}

Compact constructor lists values of all fields in order of declaration. Field
values in extended constructor may follow in any order and may be skipped.
Skipped fields are initially unset (their value is null) or set to default values.
You may provide default values to fields of basic types (numbers, strings,
characters and booleans).

type Person {
name: String = "John",

age: Int = 20

}

Structure fields are accessed using dot.

/* EXAMPLE: Declaring structure. */

use "io"

type Complex {
re: Double,

im: Double

}

def main(args: [String]) {
var z = new Complex(-1.5, 4)

println("z = " + z.re + "+" + z.im + "i")

// => -1.5+4i

}

9

4.6 Functional types

Functional type is a type of procedure or function. The syntax of the function
type is:

(Type1, Type2, ..., TypeN): ReturnType

(Type1, Type2, ..., TypeN)

If return type is omitted, then type represents procedure.
Functions can part in expressions like any other values. In the next

example we create variable of functional type and assign different values to
it.

/* EXAMPLE: Using function values. */

use "io"

def max(a: Int, b: Int): Int = if (a > b) a else b

def main(args: [String]) {
var f: (Int,Int):Int

f = max

println(f(3,5)) // => 5

f = def(a:Int, b:Int): Int {a + b}
println(f(3,5)) // => 8

}

5 Expressions

5.1 Constants

null constant
The keyword null represents special value that is used to indicate that

some object is uninitialized. New variables, elements of new arrays, fields of
new structures that were not set explicitely are set to null.

There are only three operations that end normally using null value:

• Testing whether object is null or not: val == null

• Assigning null value to object. If variable is set to null, memory
occupied by it is freed and it enters uninitialized state.

• Calling null.tostr() returns string "null".

10

Attempts to perform other operations on uninitialized object end with
ERR NULL error.

Integer numbers
Integer numbers are values of types Int or Long. Ether recognizes decimal

numbers and hexadecimal numbers preceded with 0x. By default, numbers
are of type Int. To write Long number you need to add L or l to it. Examples:

42 0x1CCF 123L

Floating point numbers
Floating point types are Float and Double. Ether recognizes numbers

with decimal dot (3.14, 0., .15) and numbers in exponential form (1e15,
31.4e-1, .15e+4 which represent 1 · 1015, 31.4 · 10−1, 0.15 · 104 respectively).
By default, numbers are of type Double. To indicate that number is Float

you need to add suffix F or f. To indicate that number is Double you may
add suffix D or d. For instance, 5d is Double and .15e+4F is Float.

Boolean values
Boolean values are represented by keywords true and false.

Strings
String literal is a sequence of zero or more characters and escape sequences

enclosed in double quotes. Examples:

"" "This is a string" "Pi symbol is \u03C0\n"
The following escape sequences are supported:
\n new line;
\t horizontal tabulation;
\r return;
\b backspace;
\f form feed;
\’ single quote (’);
\" double quote (");
\\ backslash (\);
\nnn ASCII character by its octal code, nnn is octal number

in range 0..377;
\uXXXX Unicode character by its hexadecimal code, XXXX is ex-

actly four hexadecimal digits.

Characters
A character in single quotes is a Char value. Escape sequences are also

supported.

’a’ ’\n’ ’\u03C0’

11

5.2 Operators

Arithmetics
Arguments of arithmetic operators are numbers (Int, Long, Float or

Double). If arguments are numbers of different types, result is the most wide
type.

- a Negation
a + b Addition
a - b Subtraction
a * b Multiplication
a / b Division
a % b Remainder from division

Equality
Equality operators can be applied to arguments of any type. Result is

either true or false.
a == b Equals
a != b Not equals

Number comparison
Arguments of arithmetic operators are numbers (Int, Long, Float or

Double). If arguments are numbers of different types, they are converted to
the most wide type before comparison.

a < b Less than
a <= b Less than or equal to
a > b Greater than
a >= b Greater than or equal to

Logical operators
Logical operators are operators between Bool values. Result is either

true or false.
! a Logical NOT
a & b Logical AND
a && b Lazy logical AND
a | b Logical OR
a || b Lazy logical OR
a ^ b Exclusive OR

Bitwise operators
Bitwise operators perform logical operations between bits of integer num-

bers. Both arguments must be Int or Long.

12

~ a Bitwise negation
a & b Bitwise AND
a | b Bitwise inclusive OR
a ^ b Bitwise exclusive OR

Bit shifts
Operators of this group shift bits of given integer number. The first

argument is either Int or Long. The second argument specifies amount of
bits to shift and must be an integer in range 1..31 for Int or 1..63 for Long.

a << b Shift bits left
a >> b Shift bits right saving sign bit
a >>> b Shift bits right

String operators
str1 + str2 Concatenates two strings together. If second argu-

ment is not a string, it is converted to a string using
Any.tostr().

str[at] Returns character at the specified position of the string.
str[from:to] Returns sequence of characters in positions from .. to-1.
str[:to] Is equal to str[0:to].
str[from:] Is equal to str[from:str.len()].

Function invocation ()
Postfix operator expr(arg1,arg2,...) executes function defined by ex-

pression expr. The expression must be of functional type.

Operator precedence
The following table shows order in which operators are applied. The

higher category is, the earlier operator will apply. Operators from the same
category are applied from left to right (right to left for prefix operators).

13

Category Operators
Postfix expr(...)
expr[at]
expr[from : to]

Prefix !expr
-expr
+expr
~expr
Multiplicative * / %

Additive + -

Shifts << >> >>>

Equality == !=

Comparison < <= > >=

AND & &&

Inclusive OR | ||

Exclusive OR ^

5.3 Type cast

Syntax:

expr.cast(Type)

Type cast is used in cases when actual type of expression cannot be
predicted by compiler. Also, it can be used to convert between numeric
types.

5.4 Block expression

Syntax:

{
expr1;

expr2;

...

exprN;

}
Block expression is a sequence of zero or more expressions enclosed in

curly braces. Result of block is the result of the last expression. If last
expression does not return value, then the whole block does not return value.
Empty block {} may be used as empty expression. Semicolons are optional
and may be omitted if that does not lead code to ambiguity.

Variables defined within block are visible only within this block.

14

5.5 Conditional expression

Syntax:

if (condition) expr1 else expr2

if (condition) expr

The condition must return Bool value. If it is true, expr1 is evaluated,
otherwise expr2 is evaluated. The result of this operator is the value of
evaluated expression.

// Returns maximum of two numbers

def max(a: Int, b: Int): Int = if (a > b) a else b

If else branch is omitted, then nothing is executed when condition is
false.

5.6 Switch expression

Syntax:

switch (val) {
a1, a2, ..., aM: expr1

b1, b2, ..., bN: expr2

...

else: expr else

}

Switch expression chooses one of branches of execution depending on
given value. Expressions ai, bi must be Int constants (or expressions from
which constants are easily calculatable) and must differ from each other.
Expression val must be of type Int. If it equals one of numbers a1, ..., aM,
then expr1 is evaluated and returned. If it equals one of numbers b1, ..., bN,
then expr2 is evaluated and returned, and so on. If number returned by val

differs from all given constants, then expr else is evaluated and returned.
If else branch is omitted, then nothing is calculated.

// Returns factorial of a number

def fac(n: Int): Long = switch (n) {
0, 1: 1L

else: n * fac(n-1)

}

15

5.7 While loops

Loop with precondition:

while (condition) expr

The condition must return Bool value. If it is true then expr is evalu-
ated and condition is checked again.

Loop with postcondition:

do expr while (condition)

The only difference of this loop from previous is that condition is checked
after expr is evaluated, so the body of this loop is always executed at least
once.

5.8 For loop

Syntax:

for (init, condition, increment) expr

Before the first cycle of a loop init expression is evaluated. Then,
condition is checked. If it is true, then expr is evaluated, increment

is evaluated and condition is checked again.
If you want to omit init or increment, use empty expression {}.
”For” loop is widely used when number of cycles in a loop is known or

fixed. For example, it can be used to iterate over array elements:

for (var i = 0, i < array.len, i += 1) {
println(array[i])

}

5.9 Anonymous functions

Functions can be defined right in place where they are needed using the
following syntax:

def(arg1: Type1, ..., argN: TypeN): RetType = expr

def(arg1: Type1, ..., argN: TypeN): RetType {
expr1;

expr2;

...

}

16

For example:

var list = new List()

list.addall(["tar", "top"])

list.mapself(def(a: Any): Any = "s"+a)

println(list) // => [star, stop]

5.10 Try/catch operator

When function fails to end normally (for instance, tries to divide by zero),
it raises an error. Usually, program just ends and prints error message.
Alternatively, error can be catched by try/catch operator.

Syntax:

try expr catch (var e) errexpr

try expr catch errexpr

If expr evaluates normally then its value is returned. Otherwise, error
object is stored in variable e and errexpr is evaluated and returned. If error
object is not needed, variable definition may be omitted.

try {
println(a / b)

} catch {
println("Division by zero")

}

6 Special functions

Some functions are treated specially by compiler. They allow to express
things easier.

6.1 Methods

Method is a function bound to specific type. Semantically, method is an
action which can be performed on a value. For example, output byte stream
(type OStream) has method write(byte) which writes given byte to the
stream. To call an object method, value is followed by dot and then by
function:

// writing ’A’ character to the output stream

stdout().write(’A’)

17

You can define your own methods for new types and even for existing
types. Syntax of method is

def Type.name (arg1 : Type1, ... argN : TypeN): ReturnType {
function body

}

Keyword ’this’ is used to refer to the owner of the method. In the
following example we add to the complex number type method that converts
it into a string.

/* EXAMPLE: Defining a method. */

use "io"

type Complex {
re: Double,

im: Double

}

def Complex.tostr(): String {
"" + this.re + "+" + this.im + "i"

}

def main(args: [String]) {
var c = new Complex(1, 2)

println(c.tostr()) // => 1.0+2.0i

}

Note, that method tostr() is commonly used to convert several builtin
types to a string. You can read more about it in an API documentation
for Any.tostr(). In our example, however, method gets overriden and
Complex.tostr() is used instead. Be warned, that this override is not dy-
namic, which method to call is resolved statically at compilation time.

/* EXAMPLE: inherited type with overriden method. */

type A { }

def A.tostr(): String = "A"

type B < A { }

18

def B.tostr(): String = "B"

def main(args: [String]) {
// variable is of type A

var b: A;

// actual value is of type B

b = new B()

// but still A.tostr() is used

println(b.tostr()) // => A

}

6.2 Constructors

Constructor is a special function used to allocate and initialize structure.
Constructors are defined using the following syntax:

def Type.new(arg1: Type1, ..., argN: TypeN) {
this.field1 = value1

...

// other code

}

and then used with ”new” keyword.

var obj = new Type(arg1, ..., argN)

6.3 Array operators

Array operators [] and []= can be overloaded using methods

def Type.get(at: IndexType): ValueType

def Type.set(at: IndexType, value: ValueType)

thus giving a type array like properties.
Expression Translated to
value[index] = expr value.set(index, expr)

value[index] value.get(index)

For example, lists and dictionaries define these methods and may be used
with such syntax.

If indices used in get/set are Int numbers, then range operator [:] can
also be overloaded. To use it you should define the following methods

def Type.range(from: Int, to: Int): Type

def Type.len(): Int

19

This will cover three use cases:
Expression Translated to
value[from : to] value.range(from, to)

value[: to] value.range(0, to)

value[from :] value.range(from, value.len())

6.4 Properties

To declare a property foo of the type use the following methods.

def Type.get foo(): PropertyType

def Type.set foo(value: PropertyType)

Properties use the same syntax as structure fields. If only get is de-
fined, property is read-only. If only set is defined, property is write-only.
Expression Translated to
value.foo = expr value.set foo(expr)

value.foo value.get foo()

Note, that structure fields take preference over properties with the same
name.

6.5 Conversion to a string

String representation of a value is returned by method

def Type.tostr(): String

If this method is defined, it is called automatically when you use string
concatenation and by the following functions

print

println

OStream.print

OStream.println

StrBuf.append

StrBuf.insert

6.6 Equality operators

Equality operators can be overriden using the following method.

def Type.eq(other: Type): Bool

20

Operators are overriden as follows:
Expression Translated to
value == other value.eq(other)

value != other !value.eq(other)

This method should obey the general contract of equivalence relation.
That is, for any values x, y and z of the type Type the following holds:

• x.eq(x) always returns true;

• x.eq(y) and y.eq(x) return the same result;

• if x.eq(y) is true and y.eq(z) is true then x.eq(z) is also true.

6.7 Comparison operators

Comparison operators can be overriden using the following method.

def Type.cmp(other: Type): Int

Operators are overriden as follows:
Expression Translated to
value < other value.cmp(other) < 0

value > other value.cmp(other) > 0

value <= other value.cmp(other) <= 0

value >= other value.cmp(other) >= 0

This method should obey the general contract of order relation. That is,
for any values x, y and z of the type Type the following holds:

• x.cmp(x) always returns 0;

• x.cmp(y) == -y.cmp(x);

• if x.cmp(y) <= 0 and y.cmp(z) <= 0 then x.cmp(z) <= 0;

• if x.cmp(y) < 0 and y.cmp(z) < 0 then x.cmp(z) < 0.

21

6.8 Other operators

Expression Translated to
-x x.minus()

!x x.not()

x + y x.add(y)

x - y x.sub(y)

x * y x.mul(y)

x / y x.div(y)

x % y x.mod(y)

x & y x.and(y)

x | y x.or(y)

x ^ y x.xor(y)

x << y x.shl(y)

x >> y x.shr(y)

x >>> y x.ushr(y)

A Appendix: Compiler options

The following options are supported by ex:

-o name Use the following name for output file. By default, a.out is
used.

-Idir Search headers also in this directory. By default headers are searched
in the current directory and in /inc.

-Olevel Use specified optimization level.

-O0 Turn all optimizations off.

-O1 Use basic optimizations. This is the default behavior.

-O2 Use experimental optimizations.

-lname Link executable with library libname.

-Ldir Search libraries to link with also in the following directory. By
default libraries are searched in /lib.

-ssoname Add soname to the built library.

22

-g Generate debugging info. With this option information about source
file is included in generated binary.

-c Only compile sources, but do not link.

-Wcategory Turn on specified category of warnings. To turn off warning
category use -Wno-category. You may turn on/off all warnings using
-Wall or -Wno-all.

-Xfeature Turn on experimental feature.

B Appendix: Warning messages

Warnings about unnecessary casts
These warnings indicate that cast() expression is redundant since expres-

sion is already of the requested type.
To enable: -Wcast
To disable: -Wno-cast
Default: enabled

Unnecessary cast to the same type

Unnecessary cast to the supertype

Warnings about names masking existing names
To enable: -Whidden
To disable: -Wno-hidden
Default: enabled

Variable Name hides another variable with the same name

There is already variable with this name at outer level. It is recommended
to rename variable to avoid confusion.

Warnings about main() function
Function called main() is an entry point for program execution. It must

receive an array of strings and return Int (or be a procedure). If you are
using function for another purpose and call it main() it is better to rename
the function.

To enable: -Wmain
To disable: -Wno-main
Default: enabled

Incorrect number of arguments in main(), should be ([String])

Incompatible argument type in main()

Argument of main() should be of type [String]

23

Incompatible return type in main(), should be Int or <none>

Warnings about overloaded operators
These warnings are shown on methods that violate conventions used in

Ether when overloading operators.
To enable: -Woperators
To disable: -Wno-operators
Default: enabled

Constructor returns value of different type than Type

Constructor is a method used to create new instance of specified type.
If you are using method named .new() for other purposes then creating new
object it is better to rename method.

Method Type.eq cannot be used as override for equality operators

Equality override must accept exactly one argument of the same type
as owner and return Bool. If you are using method named .eq() for other
purposes than equality comparison it is better to rename method.

Method Type.cmp cannot be used as override for comparison operators

Comparison override must accept exactly one argument of the same type
as owner and return Int. If you are using method named .cmp() for other
purposes than order comparison it is better to rename method.

Method Type.tostr cannot be used as override for Any.tostr()

Method tostr() is commonly used to build string representation of the
object. It must accept no arguments and return String. If you are using
method .tostr() for other purposes it is better to rename method.

Warnings about entities in included files
Every source processed by compiler is combined with includes to create

compilation unit. If some entity is implemented in header or other file in-
cluded using use directive, and this file is included in more than one source,
each compilation unit will have its own copy of the entity. E.g., if global vari-
able is defined in header, each source will have its own copy of this variable,
i.e. actually distinct variables. Warnings in this group indicate such cases.

To enable: -Wincluded
To disable: -Wno-included
Default: enabled

Global variable Name in included file

Global variables are unique in the compilation units. If this file is included
in more than one source, each compilation unit will have its own copy of the
variable.

Function Name is implemented in included file

24

Functions are unique in the compilation units. If this file is included in
more than one source, each compilation unit will have its own copy of the
function.

Warnings about unsafe type casts
Warnings in this group indicate automatic type cast when expected type

differs from actual.
To enable: -Wtypesafe
To disable: -Wno-typesafe
Default: enabled

Unsafe type cast from Type1 to Type2

Indicates that expected type differs from that given by expression. If you
are completely sure about actual type of expression you can suppress this
warning using .cast()

Unsafe type cast when copying from Array to [Type]

It is not recommended to use untyped arrays. The code should be rewrit-
ten to use arrays of certain types.

Unsafe type cast when copying from [Type1] to [Type2]

Indicates that destination array in acopy() contains elements of different
type. Therefore, care must be taken to ensure that source array contains
only elements of destination type. This warning cannot be suppressed in
individual cases.

Function.curry is not type safe since actual function type is unknown

Compiler cannot verify safety of using method curry() because type of
a function is unknown at the compilation time. It is adviced to use certain
functional types instead of general Function where it is possible. If you are
completely sure about type of a function you can suppress this warning by
casting function to the needed type.

Deprecation warnings
Warnings marked with word ”deprecated” define things that are not rec-

ommended to use and will be removed in subsequent versions.
To enable: -Wdeprecated
To disable: -Wno-deprecated
Default: enabled

25

	Building a program
	Program structure
	Comments
	Functions
	Main function
	Includes

	Variables
	Declaring variables
	Local and global variables
	Constants

	Types
	Numeric types
	Bool type
	String type
	Arrays
	Structures
	Functional types

	Expressions
	Constants
	Operators
	Type cast
	Block expression
	Conditional expression
	Switch expression
	While loops
	For loop
	Anonymous functions
	Try/catch operator

	Special functions
	Methods
	Constructors
	Array operators
	Properties
	Conversion to a string
	Equality operators
	Comparison operators
	Other operators

	Appendix: Compiler options
	Appendix: Warning messages

